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PERFORMANCE OF VARIABLE TWO-DIMENSIONAL INLET DESIGNED 

FGR ENGINE-INLET MATCHIIVG 

I - PERFORMANCE AT DESIGN MACH NUMBER OF 

By M. A .  Beheim and L. W .  G e r t s m a  

3.07 

An inves t iga t ion  of t he  performance a t  t he  design Mach number of 
3.07 w a s  conducted on a two-dimensional i n l e t  which had incorporated i n t o  
i t s  design features necessary f o r  e f f i c i e n t  eng ine - in l e t  match5ng over 
a wide range of f l i g h t  Mach numbers. The i n l e t  could be operated with 
e i t h e r  a two-oblique-shock ramp o r  an i sen t ropic  compression sur face ,  
both of which could be  var ied  t o  con t ro l  the amount of ex te rna l  compres- 
s ion .  
none decreased pressure  recovery by more than about 1 percent .  Removing 
about 5 percent  of t he  d i f f u s e r  airflow through a boundary-layer ram 
scoop at  t h e  d i f f u s e r  t h r o a t  increased pressure recovery from 55 t o  64 
and 70  percent  with t h e  two-shock and i sen t ropic  ramps, respec t ive ly ,  
bu t  decreased s u b c r i t i c a l  s t a b i l i t y  by about one-half .  Bleeding air 
near t h e  d i f f u s e r  e x i t  had l i t t l e  e f f e c t  on pressure  recovery or s t a b i l i t y .  
Di f fuser -ex i t  air d i s t o r t i o n  was about 5 percent at c r i t i c a l  operat ion.  
Theore t i ca l  cowl-pressure drag w a s  equal t o  about 10 percent of t he  net  
t h r u s t  of an assumed engine. 

Provis ions f o r  a v a r i e t y  of bypass systems were incorporated and 

INTRODUCTION 

The experimental  performances of several  variable-geometry i n l e t s  
designed f o r  matching turbojet-engine airflow requirements up t o  about a 
Mach number of 2 have been repor ted  i n  numerous re ferences  (e.g., r e f s .  
1 and 2 ) .  Theore t ica l  analyses show t h a t  if similar matching techniques 
(i .e., v a r i a b l e  external-compression-surface geometry and i n t e r n a l  bypass 
arrangements) a r e  employed with an i n l e t  s ized  f o r  e f f i c i e n t  matching a t  
higher f l i g h t  Mach numbers (e  .g., Mach 31, about 35 percent  or more of 
t he  a i r  may be s p i l l e d  a t  lower f l i g h t  speeds. 
d a t a  a r e  needed t o  determine the  performance of such i n l e t s .  

Addit ional  experimental  
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An inves t iga t ion  w a s  conducted at t h e  NACA Lewis  laboratory at  sev- 
eral Mach numbers t o  determine t h e  performance (pressure recovery, m a s s  
flow, s t a b i l i t y ,  and d i s t o r t i o n )  of a two-dimensional i n l e t ,  which had 
incorporated i n t o  i t s  design f ea tu res  necessary f o r  e f f i c i e n t  engine- 
i n l e t  matching over a wide range of f l i g h t  speed. The inves t iga t ion  w a s  
not intended t o  i l l u s t r a t e  t he  matching of any p a r t i c u l a r  engine bu t  w a s  
t o  determine t h e  e f f e c t s  of ramp r o t a t i o n  and bypass arrangements on dif-  
fuser  performance. This r epor t  p resents  t h e  performance of t h i s  d i f f u s e r  
a t  the design Mach number, 3.07. 
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SYMBOLS 

drag assoc ia ted  w i t h  air b leed  

net  t h r u s t  

i d e a l  ne t  t h r u s t  (100-percent pressure recovery) 

mass flow 

t o t a l  pressure 

s t a t i c  pressure 

Subscripts : 

b upstream of bottom con t ro l  door 

0 conditions i n  f r e e  stream i n  capture area of i n l e t  

1 i n l e t  t h roa t  

2 compressor face  

APPARATUS 

The f i v e  matching arrangements (which could be used ind iv idua l ly  or 
i n  some combination) considered i n  the  design of t h e  d i f fuse r  f o r  oper- 
a t ion  over a wide range of Mach numbers (see f i g .  1) were: 
sonic s p i l l a g e  with t h e  compression surface;  (2) t h r o a t  bypass with a 
ram scoop (which could a l s o  be used f o r  boundary-layer removal); (3) top  
bypass w i t h  a flow divider ;  (4) t op  bypass without a flow d iv ider ;  and 
(5) bottom bypass. 
t he  two-shock ramp and the  bottom bypass i s  shown with the  i s en t rop ic  
ramp, any of t he  bypass arrangements could be used wi th  e i t h e r  of t he  
ramps. 

(1) super- 

Although the  t h r o a t  and top  bypasses are shown with 
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I n  t he  present  i nves t iga t ion  at t h e  design Mach number, none of 

these  bypass systems were used as such; however, t h e  e f f e c t s  of removing 
compression-surface boundary layer  through the  r a m  scoop a t  t h e  th roa t  
and a l s o  through t h e  bottom bypass were determined. 
air i n  both cases  w a s  cont ro l led  with t h e  bottom c o n t r o l  door. 

The discharge of t h e  

The d i f fuse r  w a s  designed t o  accommodate e i t h e r  a two-oblique-shock 
ramp o r  an i s en t rop ic  compression surface by changing t h e  s ide  f a i r i n g .  
The ramps a r e  shown i n  f igu-es  l (a )  and (b) at the  iiesign pos i t i on  ( i . e . ,  
t h e o r e t i c a l  compression waves focused at cowl l i p )  f o r  a Mach number of 
3.07. The t h e o r e t i c a l  pressure recoveries a t  t h i s  Mach number, consider- 
ing only shock losses ,  are 72 aiiii 77 percent with the two-shock and the  
i s en t rop ic  ramps, respec t ive ly .  

The angular pos i t i on  of t h e  two-shock ramp could be var ied  by r o t a t -  
i ng  each of t h e  two ramps about i t s  leading edge. The i s en t rop ic  ramp 
also could be r o t a t e d  about its leading edge, and, s ince  t h e  po r t ion  of 
t h e  ramp wi th  i s en t rop ic  compressive turning w a s  made of spr ing  s t e e l ,  
t he  contour could be var ied.  The subsonic por t ion  of t he  d i f fuse r  could 
be var ied  by moving t h e  s p l i t t e r  p l a t e  i n  a v e r t i c a l  d i r e c t i o n  and by 
r o t a t i n g  t h e  d i f f u s e r  p l a t e  about i t s  t r a i l i n g  edge. The ove r -a l l  d i f -  
f u s e r  length  w a s  kept constant ,  but t he  length of the d i f f u s e r  p l a t e  w a s  
var ied  f o r  var ious matching arrangements. The long d i f f u s e r  p l a t e  w a s  
used when excess a i r  w a s  t o  be s p i l l e d  w i t h  e i t h e r  t h e  compression ramp, 
the  th roa t  bypass, or t h e  top  bypass. The shor t  d i f f u s e r  p l a t e  w a s  em- 
ployed when the  bottom bypass w a s  t o  be used. 

A s  i nd ica t ed  i n  f i g u r e  l(a), the  i n i t i a l  t h e o r e t i c a l  ex te rna l  cowl 
l i p  angle w a s  31° ( j u s t  under shock detachment a t  the  design Mach numl 
and t h e  i n t e r n a l  angle  w a s  28O. The t h e o r e t i c a l  p ressure  drag of t h i s  
cowl i s  about 10 percent of t he  n e t  th rus t  of a constant  r o t a t i o n a l  speed 
engine with a f te rburn ing  at  a Mach number of 3. The a c t u a l  cowl t h a t  
w a s  used d i f f e r e d  s l i g h t l y  from the  theo re t i ca l  cowl i n  t h a t  t he  l i p  w a s  
bent  downward t o  an e x t e r n a l  angle of 3 9 O  i n  t h e  reg ion  of t h e  cowl lead-  
ing  edge. Because t h i s  e r r o r  d i d  not a f f ec t  the  pos i t i on  of t he  cowl 
leading edge with respec t  t o  t h e  theo re t i ca l  pos i t ion ,  i t  probably did 
not a f f e c t  i n t e r n a l  duct performance appreciably. 

The flow-area va r i a t ions  of t h e  d i f fuser  a r e  shown i n  f igu res  l ( c )  
Removing t h e  flow d iv ider  of the top bypass r e s u l t e d  i n  l o c a l  and (d) .  

overdiffusion and discontinuous area var ia t ions .  Shortening the  d i f f u s e r  
p l a t e  t o  use t h e  bottom bypass had s i m i l a r  e f f e c t s  on t h e  a rea  va r i a t ion .  
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PROCEDURE 

The inves t iga t ion  w a s  conducted i n  the  Lewis 18- by 18-inch Mach 
number 3 . 0 7  tunnel  a t  a Reynolds number of about 1.9~106 per  f o o t .  A i r -  
flow through the  d i f f u s e r  w a s  con t ro l l ed  with a choked e x i t  plug, and 
the  mass-flow r a t i o  w a s  computed from the  plug sonic  area and a measured 
average total pressure  j u s t  upstream of the  plug. The pressure  recovery 
was determined i n  an annulus about a simulated compressor hub with a 
rake designed f o r  area-weighting ( f i g .  l ( b ) )  . With t h e  t h r o a t  r a m  scoop 
used, the  t o t a l  p ressure  of t he  bleed air w a s  measured j u s t  upstream of 
the  bottom c o n t r o l  door. C r i t i c a l  operat ion of t he  i n l e t  w a s  determined 
from sch l i e ren  observation. 

During s u b c r i t i c a l  operat ion,  two d i s t i n c t  types of normal-shock 
i n s t a b i l i t y  were genera l ly  observed: (1) a l o c a l  o s c i l l a t i o n  of t h e  
shock ( f l u t t e r )  accompanied by s m a l l  f l u c t u a t i o n s  of compressor f a c e  
pressure;  and (2)  a l a r g e  movement of t he  shock along the  compression 
surface (buzz) r e s u l t i n g  i n  la rge  v a r i a t i o n s  i n  compressor-face pressure .  
A s  the d i f f u s e r  mass-flow r a t i o  w a s  decreased, t h e  start  of buzz w a s  
ea s i ly  de tec ted  because of the  l a rge  dis turbances t h a t  r e su l t ed .  D e -  
creasing a i r f low f u r t h e r  r e s u l t e d  i n  increased frequency of t h e  d i s tu rb -  
ances. The start  of f l u t t e r  w a s  not so e a s i l y  determined, because t h e  
frequency and amplitude of t he  dis turbances gradual ly  increased  as air- 
flow was decreased. Transient  s t a t i c -p res su re  f l u c t u a t i o n s  were measured 
a t  the compressor face .  A r b i t r a r i l y ,  the  normal shock w a s  considered 
s t ab le  u n t i l  t h e  amplitude (max. t o  min. values)  of t he  s t a t i c - p r e s s u r e  
f luc tua t ion  w a s  g rea t e r  than 0.4 pounds per  square inch (Apz/Po 
The s t a b i l i t y  of t he  i n l e t  i s  ind ica t ed  i n  t h i s  r e p o r t  by t h e  symbols 
shown i n  f i g u r e  2, which shows examples of t h e  t r a n s i e n t  compressor-face 
s t a t i c -p res su re  recordings taken during s t a b l e  operat ion,  f l u t t e r ,  and 
buzz (arranged i n  order of decreasing mass-flow r a t i o ) .  The accuracy of 
the  indicated l a rge  amplitudes during buzz i s  doubtful  because of t h e  
l imi t a t ions  of t h e  recording equipment. 

0.028). 

RESULTS AND DISCUSSION 

O p t i m u m  Throat Bleed 

With t h e  t h r o a t  ram scoop a t  a r a i s e d  pos i t i on ,  t h e  operat ion of 
the  bleed duct could be va r i ed  with t h e  bottom control-door p o s i t i o n  
while maintaining c r i t i c a l  d i f f u s e r  operat ion wi th  t h e  ex i t -p lug  pos i t i on .  
From the  da t a  obtained i n  t h i s  manner ( see  f i g .  3), an optimum cont ro l -  
door pos i t i on  w a s  determined. With t h e  door at t h i s  pos i t i on ,  t he  d i f -  
fuser  performance ( f i g .  4 )  w a s  obtained by varying t h e  ex i t -p lug  
posi t ion.  



flow r a t i o  and to t a l -p re s su re  recovery, and a n  e f f i c i ency  parameter f o r  
var ious ram scoop heights  and d i f fuse r  mass-flow r a t i o s  with the  ramps 

These pressure  recoveries  compare closely with those obtained with 
the  t . w ~ - s h o ~ k  and i s en t rop ic  ramp i n l e t s  cf reference 3. The supersonic 
d i f f u s e r s  of t h e  referenced tests d i f f e r  from t h e  present  ones i n  t h a t  
they incorporate  some i n t e r n a l  contract ion which reduced t h e  cowl pres-  
sure  drag t o  about 2 percent of t h e  engine t h r u s t .  It would appear pos- 
sible t o  match successfu l ly  t h e  low-drag configurat ions of reference 3 
by the  method of t h i s  repor t .  

These performance c h a r a c t e r i s t i c s  of t h e  primary and bleed a i r f lows  
were used i n  evaluat ing the  e f f i c i ency  parameter shown i n  f i g u r e  3 .  This 
parameter i s  def ined as the  net  t h r u s t  of an assumed constant r o t a t i o n a l  
speed engine operat ing with t h e  measured d i f fuse r  pressure-recovery-minus- 
theore t ica l -drag  incurred from t h e  bleed a i r  divided by t h e  ne t  t h r u s t  
of t h e  engine operat ing with 100-percent d i f fuse r  pressure recovery. 
The bleed air  w a s  assumed t o  be discharged downstream i n  the  f l i g h t  d i -  
r e c t i o n  from a sonic  nozzle. With a given scoop height  t he  e f f i c i ency  
w a s  an optimum at about t h e  same operating condi t ion of t he  bleed duct 
f o r  which c r i t i c a l  pressure recovery w a s  highest .  
ramp an optimum scoop-to-throat-height r a t i o  occurred a t  a lower value 
than t h a t  needed f o r  maximum c r i t i c a l  pressure recovery. 
t r o p i c  ramp t h e  optimum scoop-to-throat -height r a t i o  probably w a s  near 
t h e  highest  value f o r  which data a r e  shown. 

For t h e  two-shock 

With the  i sen-  

I n l e t  Performance Curves 

The performance of t he  d i f fuser  with the  two-shock and t h e  i s en t rop ic  

A t  each scoop height  t h e  cont ro i  door of the  bleed duct w a s  
ramps at t h e  design pos i t ions  i s  shown i n  f igu re  4 f o r  var ious scoop 
heights .  
pos i t ioned  t o  produce the  highest  e f f ic iency  (determined i n  f i g .  3),  and 
t h i s  p o s i t i o n  w a s  kept f i xed  as the d i f fuse r  a i r f low w a s  var ied  wi th  t h e  
. P u 3  - 
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Without boundary-layer removal, s u b c r i t i c a l  s t a b i l i t y  w a s  f a i r l y  
extensive wi th  e i t h e r  ramp but w a s  g rea t e r  with the  two-shock ramp. 
However, s t a b i l i t y  w a s  decreased by about one-half when t h e  scoop w a s  
ra i sed .  A i r  d i s t o r t i o n  a t  t h e  compressor f a c e  during c r i t i c a l  opera t ion  
without boundary-layer removal was about 5 percent  with e i t h e r  ramp (av- 
erage Mach number j u s t  upstream of compressor hub w a s  about 0.3 a t  c r i t -  
i c a l  operat ion)  bu t  increased  sharply during s u p e r c r i t i c a l  operat ion 
and a l s o  a t  s l i g h t l y  s u b c r i t i c a l  mass-flow r a t i o s  with t h e  i s en t rop ic  
ramp. D i s to r t ion  genera l ly  w a s  about 1 percent l e s s  when boundary-layer 
removal w a s  employed, and the  sharp r i s e  i n  d i s t o r t i o n  at s l i g h t l y  sub- 
c r i t i c a l  a i r f lows  with t h e  i s e n t r o p i c  ramp no longer occurred. I n  gen- 
eral, varying t h e  control-door pos i t i on  over t h e  range ind ica t ed  i n  
f igure  3 had l i t t l e  e f f e c t  on d i s t o r t i o n  a t  a given scoop he ight .  

D i s  charge Contours 

Some examples of pressure-recovery contours at t h e  compressor f a c e  
a r e  shown i n  f i g u r e  5 .  
occurred a t  c r i t i c a l  operat ion wi th  the  two-shock ramp when boundary 
layer  w a s  removed. 
i n  d i s t o r t i o n  t h a t  occurred with t h e  i s e n t r o p i c  ramp from s u p e r c r i t i c a l  
t o  c r i t i c a l  t o  s u b c r i t i c a l  operat ion,  r e spec t ive ly ,  without boundary- 
layer removal. 
boundary-layer removal i s  shown i n  f i g u r e  5 ( f ) .  

Figures  5(a) and (b)  i l l u s t r a t e  t he  changes t h a t  

Figures  5 ( c ) ,  (d ) ,  and (e) show the  l a rge  v a r i a t i o n s  

The contour t h a t  r e s u l t e d  during c r i t i c a l  opera t ion  with 

Schl ie ren  Photographs 

Without boundary-layer removal t h e  c r i t i c a l  mass-flow r a t i o s  were 
somewhat less than 1. Schl ie ren  photographs ( f i g .  6) i n d i c a t e  t h a t  at 
c r i t i c a l  operat ion a l o c a l  dis turbance ( ind ica t ed  by t h e  arrow) e x i s t e d  
j u s t  ahead of t he  cowl l i p  and may have caused t h i s  s m a l l  loss  i n  a i r f low.  
This dis turbance may have been a r e s u l t  of i n t e r a c t i o n  between the  s i d e  
f a i r i n g  boundary l aye r  and the  cowl l i p  shock. The shock from t h e  cowl 
l i p  w a s  s l i g h t l y  curved near t he  cowl leading edge, because the  a c t u a l  
ex te rna l  cowl angle,  being i n  e r r o r ,  exceeded t h e  shock detachment angle  
i n  t h i s  region.  

E f fec t s  of Roughness and F i l l e t s  

Cer ta in  of t h e  conf igura t ions  were r e run  with a 1/8-inch-wide s t r i p  
of number 60 carborundum dust  1/8 inch downstream of t h e  f i r s t - ramp lead-  
ing  edge, and the  r e s u l t s  a r e  shown i n  f i g u r e  7.  With boundary-layer 
removal t h e  e f f e c t  of roughness with e i t h e r  ramp w a s  s m a l l ;  b u t  without 
boundary-layer removal and wi th  roughness t h e  pressure  recovery with t h e  
two-shock ramp ( f i g .  7 ( a ) )  w a s  lower and t h e  d i s t o r t i o n  w a s  g rea t e r ,  and 
w i t h  e i t h e r  ramp the  s u b c r i t i c a l  s t a b i l i t y  w a s  less. 
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A por t ion  of the data a l s o  w a s  repeated wi th  1/2-inch-radius f i l l e t s  
i n  t h e  corners  of t he  subsonic d i f f u s e r .  The d i s t o r t i o n ,  i n  genera l ,  
w a s  worse wi th  t h e  f i l l e t s  than without,  and o ther  performance charac te r -  
i s t i c s  were not improved. Data f o r  these  r e s u l t s  are not presented. 

Flow Survey a t  Throat 

Resul t s  of a to t a l -p re s su re  survey of t h e  flow i n t o  t h e  i n l e t  at 
t h e  cowl l i p  s t a t i o n  during c r i t i c a l  operation a r e  shown i n  f i g u r e  8 f o r  
both ramps at design and off-design pos i t ions .  When t h e  compression 
sur faces  were at  t h e  design pos i t i on ,  a vortex shee t  w a s  i n s i d e  the  cowl 
wi th  the  two-shock ramp ( f i g .  8(a))  b u t  outside w i t h  t h e  i s e n t r o p i c  ramp 
( f i g .  8 ( c ) ) .  
ou ts ide  the  cowl ( f i g .  8 (b) ) ,  and changing the i s e n t r o p i c  contour s l i g h t l y ,  
as ind ica t ed  i n  f i g u r e  9, placed the  vortex shee t  i n s i d e  t h e  cowl 
( f i g .  8 ( d ) ) .  

Rais ing the  two-shock ramp 1/2O placed the vor tex  shee t  

I n l e t  Performance a t  Off-Design Gemetrie:  

The performance of the i n l e t  with these and o ther  off-design ramp 
pos i t i ons  i s  shown i n  f i g u r e  10. The changes i n  performance probably 
r e s u l t e d  p r imar i ly  from t h e  change i n  the  vortex-sheet pos i t i on  ind ica t ed  
i n  f i g u r e  8. Without boundary-layer removal ( f i g .  1 O ( a ) )  r a i s i n g  t h e  
two-shock ramp above the  design pos i t i on  r e su l t ed  i n  increased  s u b c r i t i c a l  
p ressure  recover ies  and decreased s u b c r i t i c a l  s t a b i l i t y ,  bu t  lowering 
t h e  ramp decreased pressure  recovery and increased s t a b i l i t y .  
t i o n s  during c r i t i c a l  operat ion were higher with some ramp pos i t i ons  both 
above and below the  design pos i t i on .  
l a y e r  removal ( f i g .  10(b) ) produced higher c r i t i c a l  p ressure  recover ies  
and, i n  some cases ,  higher d i s t o r t i o n s .  When the  i s e n t r o p i c  contour w a s  
va r i ed  as shown i n  f i g u r e  9 so  t h a t  t he  vortex sheet  en tered  t h e  cowl, 
p ressure  recovery w a s  appreciably l e s s  with corresponding ram-scoop pos i -  
t i o n s ,  bu t  t h e  sharp r ise i n  d i s t o r t i o n  which occurred during s u b c r i t i c a l  
operat ion without boundary-layer removal a t  t h e  design contour was 
el iminated.  

Dis tor -  

Raising the  ramp with boundary- 

Inf luence of Bypass 

The flow d iv ide r  of the  top  bypass was removed i n  order t o  reduce 
mechanical complexity. The e f f e c t s  of the r e s u l t i n g  l o c a l  overd i f fus ion  
and sharp tu rns  on t h e  performance a r e  shown i n  f i g u r e  11. With e i t h e r  
compression sur face  and corresponding scoop pos i t ions ,  pressure recovery 
w a s  genera l ly  about 1 percent l e s s  without t he  flow d iv ide r  than with it 
during c r i t i c a i  operat ion.  
opera t ion  w i t h  boundary-layer removal w a s  s l i g h t l y  l e s s  than when t h e  

Di s to r t ion  during c r i t i c a i  and S u b c r i t i c a l  
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divider  w a s  i n ,  and t h e  r i s e  i n  d i s t o r t i o n  at s u b c r i t i c a l  opera t ion  with 
t h e  i s en t rop ic  ramp and no boundary-layer removal w a s  e l iminated.  I n  
addi t ion,  t he  sharp r ise i n  d i s t o r t i o n  during s u p e r c r i t i c a l  opera t ion  
w a s  g r e a t l y  reduced. An example of t h e  change i n  the  pressure-recovery 
contours of the  compressor f ace  t h a t  occurred during s u p e r c r i t i c a l  opera- 
t i o n  i s  shown i n  f i g u r e  12. 

With t h e  sho r t  d i f f u s e r  p l a t e  i n  pos i t i on  (bottom bypass arrangement) 
loca l  overd i f fus ion  again occurred, and t h e  e f f e c t s  on performance a r e  
presented i n  f i g u r e  13. For t h i s  configurat ion,  b leed  air  through the  
throat  scoop w a s  not con t ro l l ed  with t h e  bottom c o n t r o l  door bu t  w a s  d i s -  
charged from the  chamber beneath t h e  d i f f u s e r  p l a t e  through holes i n  the 
chamber w a l l s  i n t o  t h e  free stream. The maximum mass-flow r a t i o s  wi th  
the  shor t  d i f f u s e r  p l a t e  were somewhat less than with t h e  long p l a t e  f o r  
corresponding ramp and scoop pos i t i ons ,  probably as a r e s u l t  of some 
model leakage. Pressure recovery w a s  about 1 percent less. Di s to r t ion  
w a s  as much as 3 percent  g rea t e r  wi th  the  sho r t  d i f f u s e r  p l a t e  than with 
t h e  long plate and again increased sharp ly  during s u b c r i t i c a l  operat ion 
using the  i s en t rop ic  ramp without boundary-layer removal ( f i g .  13 (b ) ) .  
Several  c r i t i c a l  po in t s  a r e  a l s o  shown on t h e  f i g u r e  wi th  var ious amounts 
of bleed through the  bottom bypass. Bleeding up t o  about one-half of 
t h e  a i r  i n  t h i s  manner produced s l i g h t  improvements i n  d i s t o r t i o n  but  
had l i t t l e  e f f e c t  on pressure  recovery and s u b c r i t i c a l  s t a b i l i t y .  Re- 
moving the  flow d iv ide r  had the  same e f f e c t s  as with t h e  long d i f f u s e r  
p la te ,  s o  data a r e  not presented.  

SUMMARY OF RESULTS 

An inves t iga t ion  w a s  conducted on t h e  performance of a two- 
dimensional i n l e t  which had incorporated i n t o  i t s  design features neces- 
sary f o r  e f f i c i e n t  engine- in le t  matching over a wide range of f l i g h t  
Mach numbers. The i n l e t  could be operated with e i t h e r  a two-oblique-shock 
ramp or an i s en t rop ic  compression sur face ,  which could be va r i ed  t o  
regula te  t h e  amount of e x t e r n a l  compression, with a v a r i e t y  of bypass 
arrangements. The following r e s u l t s  were obtained a t  t h e  design Mach 
number of 3.07: 

1. The c r i t i c a l  p ressure  recovery of t h e  b a s i c  d i f f u s e r  (without 
bypass arrangements) with e i t h e r  t h e  two-oblique-shock or t h e  i s e n t r o p i c  
ramps a t  t h e i r  design pos i t i ons  and without boundary-layer c o n t r o l  w a s  
about 55 percent .  Di f fuser -ex i t  air d i s t o r t i o n ,  which w a s  about 5 per-  
cent a t  c r i t i c a l  operat ion with both  ramps, increased  r a p i d l y  for  super- 
c r i t i c a l  opera t ion  and also increased sharp ly  with the  i s en t rop ic  ramp 
a t  s l i g h t l y  s u b c r i t i c a l  a i r f lows .  



2.  By removing t h e  compression-surface boundary l aye r  a t  the  t h r o a t  
of t h e  d i f f u s e r  with a ram scoop, la rge  improvements were made i n  p res -  
sure  recovery.  For example, by removing between 5 and 6 percent  of t he  
d i f f u s e r  a i r f low t h e  c r i t i c a l  p ressure  recovery of t h e  bas i c  d i f f u s e r  
w a s  increased  t o  64 and 70 percent  with the two-oblique-shock and t h e  
isentrepic r ~ ~ q s ,  respec t ive ly .  The s h z q  increase ia d i s t o r t i o n  fo r  
s l i g h t l y  s u b c r i t i c a l  operat ion wi th  the  i sen t ropic  ramp w a s  e l iminated.  
However, s u b c r i t i c a l  s t a b i l i t y  w a s  only one-half as l a rge  when the  ram 
crnnn T J ~ Q  ~ s i c o i i  r ..-- ----I-- ---- 

3. The t h e o r e t i c a l  cowl pressure  drag w a s  equal  t o  about 10 percent  
of t h e  ne t  t h r u s t  of an assumed engine. 

4. The presence of any.of t he  bypass arrangements genera l ly  d i d  not 
decrease the  pressure  recovery by more than 1 percent .  

5. When the  flow d iv ide r  of t h e  t o p  bypass w a s  removed, r e s u l t i n g  
l o c a l l y  i n  overdiffusion,  d i s t o r t i o n  w a s  l e s s  during s u p e r c r i t i c a l  opera- 
t i on .  The bottom bypass a l s o  produced loca l  overdiffusion,  and d i s t o r -  
L i u L i  at, L L r t , i c a l  operat ion w a s  as mwh as 3 percent  higher .  Bleeding 
up t o  about one-half of t h e  air through the bottom bypass ( loca ted  near 
t he  d i f f u s e r  e x i t )  had l i t t l e  e f f e c t  on pressure recovery o r  s u b c r i t -  
i c a l  s t a b i l i t y .  

.I-.-- ^+ --.t.I- 

Lewis F l i g h t  Propuls i  on Labor a t  ory 
Nat ional  Advisory Committee for Aeronautics 

Cleveland, Ohio, September 12 ,  1956 
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(a) 'ho-shock ramp and top and throat bypass arrangements. 

Figure 1. - Diffuser geometry. 
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Figure 1. - Continued. Diffuser geometry. 
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Symbols 

Stable  -f-, 

F l u t t e r  & 

Buzz --e-- 

Figure 2. - Defin i t ion  of i n l e t  s t a b i l i t y  symbols. 
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Open symbols denote two-shock rmpj  
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Diffuser mass-flow ratio, m2/% 

Figure 3. - Effect of t h roa t  bleed on bas i c  i n l e t  performance. 
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(a )  Two-shock ramp. 

Figure 4. - Performance of bas i c  d i f fuse r  with design ramp posi t ions.  

C Om IDENT IAL 



N 

.7 

.6 

.5 

.4 

.20 

.15 

.10 

.05 

0 
4 .5 .6 .7 .8 .9 1.0 

Mass-flow ra t io ,  m2/mo 

(b) Isentropic  ramp. 

Figure 4. - Concluded. Performace of basic diffuser w i t h  design ramp pos i t ions .  
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Diffuser pressure recovery, P~/PO 

(a) Two-shock ramp; scoop-to-throat- 
height ratio, 0; critical operation. 

(b) Two-shock ramp; scoop-to-throat-height 
ratio, 0.224; critical operation; mass- 
flow ratio, 0.85. 

(c) Isentropic ramp; scoop-to-throat- 
height ratio, Oj supercritical oper- 
ation; diffuser pressure recovery, 
0.51. 

(e) Isentropic rampj scoop-to-throat- 
height ratio, 0; subcritical opera- 
tion; mass-flow ratio, 0.92. 

@ 1 . 5 3 5 /  .545 

(a) Isentropic ramp; scoop-to-throat-height 
ratio, 0; critical operation. 

.690 

(f) Isentropic rampj scoop-to-throat-height 
ratio, 0.240; critical operation; mass-flow 
ratio, 0.90. 

Figure 5. - Pressure-recovery contours at compressor face with basic diffuser and design 
ramp positions. 
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Figure 6. - Schl ie ren  photographs of model with design ramp posi t ions;  
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(a)  Two-shock ramp. 

Figure 7 .  - Effect  of roughness on bas i c  d i f fuse r  performance 
with design ramp posit ions.  
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(b) Isentropic ramp. 

Figure 7. - Concluded. Effect of roughness on basic diffuser performance 
with design r a p  positions. 
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(a) Two-shock rampj position, 15' - 30'; design. 

10 lo. (b) Two-shock rampj position, 1% - 3% , off design. 

(c) Isentropic r m p j  design. 

.4 .5 .6 .7 .8 .9 1.0 
Pressure recovery, P1/Po 

(a) Isentropic rampj off design. 

Figure 8. - Total-pressure profiles at inlet throat. 
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(a) Two-shock ramp; scoop-to-throat-height ratio, 0. 

Figure 10. - Effect of off-design ramp position on basic diffuser performance. 
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M a s s - f l o w  ratio, m 2 / q  

(c) Isentropic ramp. 

Figure 10. - Concluded. Effect of off-design ramp position on basic diffuser 
performance. 
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Figure U. - Effect on performance of removing flow divider  of 
t c p  bypass with design reqp positions. 
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Mass-flow ra t io ,  mz/w 
(b) Isentropic ramp. 

Figure 11. - Concluded. Effect on performance of removing flow divider of top 
bypass w i t h  design ramp positions. 
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Diffuser pressure recovery, P2/Po 

(a) Flow divider OUtj pressure recovery, 0.49j distortion, 0.04. 

(b) Flew Ctivider in; press’x-e recovery, 0.51; distort:or;, 0.16. 

Figure 12. - Pressure-recovery contours at compressor face. Long 
diffuser platej isentropic ramp at design positionj scoop-to- 
throat-height ratio, Oj supercritical operation. 
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(a) Two-shock ramp. 

Figure 13. - Effect on performance of bottom bypass with design ramp posit ions.  
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(b) Isentropic ramp. 

Figure 13. - Concluded. Effect on performame of botton bypass with desiga 
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